OFFSET
-1,2
COMMENTS
To get Maple to produce this, form t := series expansion of q^2 * j, and then do solve(t=y, y).
LINKS
Andrew Howroyd, Table of n, a(n) for n = -1..100
N. J. A. Sloane, Transforms
FORMULA
a(n) ~ c * (-1)^(n+1) * d^n / n^(3/2), where d = 2311.394562122568826864554431309352700589081544164805515755738565159053682... and c = 1943.54943209790549766737504313567156926515672546456731498696867555099... - Vaclav Kotesovec, Jun 28 2017, updated Mar 07 2018
EXAMPLE
If we write t = q^2*j = x + 744*x^2 + 196884*x^3 + ..., then x = t - 744*t^2 + 910188*t^3 - ...
MATHEMATICA
f[q_] = q^2*1728*KleinInvariantJ[ Log[q]/(2*Pi*I) ]; Rest[ CoefficientList[ InverseSeries[ Series[ f[q], {q, 0, 12}] ], q] ] (* Jean-François Alcover, Feb 17 2012 *)
PROG
(PARI) Vec(serreverse(q^2*ellj(q+O(q^15)))) \\ Joerg Arndt, Feb 25 2012
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 24 2001
EXTENSIONS
b-file corrected by Andrew Howroyd, Feb 23 2018
STATUS
approved