login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091406 Reversion of series for j-function. 5
1, 744, 750420, 872769632, 1102652742882, 1470561136292880, 2037518752496883080, 2904264865530359889600, 4231393254051181981976079, 6273346050902229242859370584, 9433668720359866477436486024652 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Peter Bala, Dec 17 2013: (Start)

Given a formal Laurent series L(z) = 1/z + a + b*z + c*z^2 + ..., there exists a formal series L^<-1>(z) = 1/z + A/z^2 + B/z^3 + ... such that L(L^<-1>(z)) = L^<-1>(L(z)) = z. The series L^<-1>(z) is called the reversion of the series L(z).

To find L^<-1>(z), first find the series reversion of the reciprocal series 1/L(z) = z - a*z^2 + z^3*(a^2 - b) - ... with respect to z, and then replace the variable z with the variable 1/z. This is the approach used in the Maple program below. (End)

Invert j = 1/q + 744 + 196884*q + 21493760*q^2 + ... to get q = 1/j + 744/j^2 + 750420/j^3 + ....

REFERENCES

J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, see p. 482.

LINKS

Table of n, a(n) for n=1..11.

Y.-H. He and V. Jejjala, Modular Matrix Models, arXiv:hep-th/0307293, 2003.

MAPLE

#A091406

with(numtheory):

Order := 12:

g2 := 4/3*(1 + 240*add(sigma[3](n)*q^n, n = 1..Order)):

g3 := 8/27*(1 - 504*add(sigma[5](n)*q^n, n = 1..Order)):

delta := series(g2^3 - 27*g3^2, q, Order):

#define the reciprocal of Klein's j_invariant

j_reciprocal := series(delta/(1728*g2^3), q, Order):

#find series reversion of j_reciprocal

j_inv := solve(series(j_reciprocal, q) = y, q):

seq(coeff(j_inv, y, n), n = 1..11); - Peter Bala, Dec 17 2013

MATHEMATICA

max = 9; s1 = 1728*Series[ KleinInvariantJ[t], {t, 0, 2*max} ] /. t -> -2*I*(Pi/Log[q]); s2 = InverseSeries[ Series[ s1, {q, 0, max} ], j] /. j -> 1/x; Rest[ CoefficientList[ s2, x ] ](* Jean-Fran├žois Alcover, Feb 16 2012 *)

PROG

(PARI) {a(n) = local(A); if( n<1, 0, A = O(x^n); A = x * (eta(x^2 + A) / eta(x + A))^24; polcoeff( serreverse( A / (1 + 256*A)^3), n))} /* Michael Somos, Jul 13 2004 */

CROSSREFS

Cf. A000521, A178451. See A066396 for another version.

Sequence in context: A178451 A066395 A161557 * A066396 A099819 A051978

Adjacent sequences:  A091403 A091404 A091405 * A091407 A091408 A091409

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:48 EST 2016. Contains 278874 sequences.