This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192731 Euler transform is 1 / (q j(q)) where j is j-function (A000521). 19
 -744, 80256, -12288744, 2126816256, -392642298600, 75506620496256, -14935073808384744, 3015675387953504256, -618587635244888064744, 128473308888136855075200, -26951900214112779571200744 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..424 B. Brent, p-adic continuity for exponents in product decomposition of the j-invariant, Answer 3 by W. Zudilin N. J. A. Sloane, Transforms FORMULA 1 / (q j(q)) = Product_{k>0} (1 - x^k)^-a(k). a(n) = 3*(A110163(n) - 8) = (1/n) * Sum_{d|n} A008683(n/d) * A288261(d). - Seiichi Manyama, Jun 18 2017 a(n) ~ (-1)^n * 3*exp(Pi*sqrt(3)*n) / n. - Vaclav Kotesovec, Mar 24 2018 EXAMPLE From Seiichi Manyama, Jun 18 2017: (Start) a(1) = (1/1) * A008683(1/1) * A288261(1) = (1/1) * (-744) = -744, a(2) = (1/2) * (A008683(2/1) * A288261(1) + A008683(2/2) * A288261(2)) = (1/2) * (744 + 159768) = 80256. (End) PROG (PARI) {a(n) = local(A, S); if( n<1, 0, A = 1 + x * O(x^n); S = x * ellj( x * A ); for( k = 1, n-1, S *= (A - x^k) ^ polcoeff( S, k)); - polcoeff( S, n))} CROSSREFS Cf. A008683, A063995, A110163, A192732, A288261, A302407, A305757. Sequence in context: A268891 A306281 A210178 * A288261 A000521 A178449 Adjacent sequences:  A192728 A192729 A192730 * A192732 A192733 A192734 KEYWORD sign AUTHOR Michael Somos, Jul 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 04:25 EDT 2019. Contains 324346 sequences. (Running on oeis4.)