login
A177191
Determinant of the n X n matrix whose element (r,c) is n for r = c, is -n for c>r, and 1 for c< r.
1
1, 6, 60, 884, 17520, 439962, 13421632, 482342856, 19956724992, 934078894910, 48784858450944, 2812154505890556, 177324556062404608, 12140949539956154946, 896952532589585448960, 71119465538136504762128
OFFSET
1,2
FORMULA
a(n) = ( (2n)^n+n*(n-1)^n ) /(n+1).
EXAMPLE
a(5) = determinant of the (5 X 5) matrix = 17520.
[ 5 -5 -5 -5 -5 ]
[ 1 5 -5 -5 -5 ]
[ 1 1 5 -5 -5 ]
[ 1 1 1 5 -5 ]
[ 1 1 1 1 5 ]
MAPLE
A177191 := proc(n)
((2*n)^n+n*(n-1)^n)/(n+1) ;
end proc:
CROSSREFS
Sequence in context: A339191 A000407 A099708 * A010040 A138379 A064815
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 04 2010
STATUS
approved