login
A177192
Primes p such that p^p ends in p and p is not congruent to 1 (mod 10).
0
5, 193, 499, 557, 1249, 1693, 4999, 7057, 31249, 49999, 52057, 54193, 56249, 79193, 281249, 829193, 952057, 4531249, 4999999, 8281249, 8704193, 17077057, 39954193, 54577057, 63281249, 64954193, 904577057, 2154577057, 3092077057, 3958704193
OFFSET
1,1
COMMENTS
A proper subset of A052228.
MATHEMATICA
fQ[n_] := PowerMod[n, n, 10^Floor[Log[10, n] + 1]] == n; p = 2; lst = {}; While[p < 10^12, If[ Mod[p, 10] != 1 && fQ@p, AppendTo[lst, p]; Print@p]; p = NextPrime@p]; lst
CROSSREFS
KEYWORD
base,nonn
AUTHOR
STATUS
approved