OFFSET
0,2
COMMENTS
Row sums are A001791.
Obtained from A059481 by removal of the last two terms in each row, followed by row reversal.
Riordan array (c(x)/sqrt(1 - 4*x), x*c(x)) where c(x) is the g.f. of A000108. - Philippe Deléham, Jul 12 2015
FORMULA
n-th row of the triangle = top row of M^n, where M is the following infinite square production matrix:
3, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... - Philippe Deléham, Jul 12 2015
EXAMPLE
Triangle begins:
1;
3, 1;
10, 4, 1;
35, 15, 5, 1;
126, 56, 21, 6, 1;
462, 210, 84, 28, 7, 1;
1716, 792, 330, 120, 36, 8, 1;
6435, 3003, 1287, 495, 165, 45, 9, 1;
24310, 11440, 5005, 2002, 715, 220, 55, 10, 1;
92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1;
352716, 167960, 75582, 31824, 12376, 4368, 1365, 364, 78, 12, 1;
MAPLE
A176992 := proc(n, k) binomial(1+2*n-k, n+1) ; end proc: # R. J. Mathar, Dec 09 2010
MATHEMATICA
p[t_, j_] = ((-1)^(j + 1)/2)*Sum[Binomial[k - j - 1, j + 1]*t^k, {k, 0, Infinity}];
Flatten[Table[CoefficientList[ExpandAll[p[t, j]], t], {j, 0, 10}]]
PROG
(Magma) /* As triangle */ [[Binomial(2*n-k+1, n+1): k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Jul 12 2015
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Dec 08 2010
STATUS
approved