login
A175398
Sequence of resulting numbers after iterations of {((((D_1^D_2)^D_3)^D_4)^... )^D_k, where D_k is the k-th digit D of the number r and k is the digit number of the number r in the decimal expansion of r (A055642)} needed to reach a one-digit number starting at r = n.
6
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1, 1, 1, 9, 1, 3, 9, 1, 8, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0,3
COMMENTS
a(n) = 1 - 9 for infinitely many n.
E.g., a(n) = b (b = 1, 2, ..., 9) for numbers n = b*10^k + A002275(k), where k >= 1.
a(n) = 1 for numbers n such that A055642(A133500(n)) = 1 for n >= 1, e.g., if the number n starts with a digit 1 or contains a digit 0 or for n >= 1.
Sequences after k steps of defined iteration (k >= 0):
0th step: A001477: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, ...
1st step: A133500: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, ...
2nd step: A175399: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1296, 1, 1073741824, 25, 1, 3, 9, 128, 8, 4096, 1628413597910449, 72057594037927936, 221073919720733357899776, 1, 1, 4, 1, 1296, 1073741824, 1, 1, 1, ...
3rd step: A175400: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1, 1, 1, 32, 1, 3, 9, 1, 8, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
4th step: A175401: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 1, 9, 1, 1, 1, 9, 1, 3, 9, 1, 8, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
See A175402 and A175403.
EXAMPLE
For n = 29: a(29) = 9 because for the number 29 there are 4 steps of defined iteration: {2^9 = 512}, {(5^1)^2 = 25}, {2^5 = 32}, {3^2 = 9}. Resulting number is 9.
CROSSREFS
Sequence in context: A346511 A177894 A287877 * A175401 A175400 A175399
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, May 01 2010
STATUS
approved