login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175395 a(n) = 2*Fibonacci(n)^2. 5
0, 2, 2, 8, 18, 50, 128, 338, 882, 2312, 6050, 15842, 41472, 108578, 284258, 744200, 1948338, 5100818, 13354112, 34961522, 91530450, 239629832, 627359042, 1642447298, 4299982848, 11257501250, 29472520898, 77160061448, 202007663442, 528862928882, 1384581123200, 3624880440722, 9490060198962, 24845300156168, 65045840269538, 170292220652450, 445830821687808, 1167200244410978, 3055769911545122, 8000109490224392, 20944558559128050 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) (n=1..) is half the number of nX2 binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors. - R. H. Hardin, Dec 02 2010

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (2,2,-1).

FORMULA

a(n) = 2*A007598(n).

G.f.: 2*x*(1-x)/(1+x)/(1-3*x+x^2). - Colin Barker, Feb 23 2012

a(n) = F(n-1)*F(n+1) + F(n-2)*F(n+2), where F = A000045, -F(-2) = F(-1) = 1. - Bruno Berselli, Nov 03 2015

a(n) = 2*(-2*(-1)^n+(1/2*(3-sqrt(5)))^n+(1/2*(3+sqrt(5)))^n)/5. - Colin Barker, Sep 28 2016

MATHEMATICA

Table[2 Fibonacci[n]^2, {n, 0, 40}] (* Bruno Berselli, Nov 03 2015 *)

PROG

(MAGMA) [2*Fibonacci(n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 24 2011

(PARI) a(n) = round(2*(-2*(-1)^n+(1/2*(3-sqrt(5)))^n+(1/2*(3+sqrt(5)))^n)/5) \\ Colin Barker, Sep 28 2016

(PARI) Vec(2*x*(1-x)/(1+x)/(1-3*x+x^2) + O(x^30)) \\ Colin Barker, Sep 28 2016

CROSSREFS

Cf. A000045, A007598.

Sequence in context: A009725 A053098 A194588 * A169888 A168506 A208966

Adjacent sequences:  A175392 A175393 A175394 * A175396 A175397 A175398

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 15:24 EST 2016. Contains 278750 sequences.