This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175395 a(n) = 2*Fibonacci(n)^2. 7
 0, 2, 2, 8, 18, 50, 128, 338, 882, 2312, 6050, 15842, 41472, 108578, 284258, 744200, 1948338, 5100818, 13354112, 34961522, 91530450, 239629832, 627359042, 1642447298, 4299982848, 11257501250, 29472520898, 77160061448, 202007663442, 528862928882, 1384581123200, 3624880440722, 9490060198962, 24845300156168, 65045840269538, 170292220652450, 445830821687808, 1167200244410978, 3055769911545122, 8000109490224392, 20944558559128050 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) (n=1..) is half the number of nX2 binary arrays with no element equal to a strict majority of its diagonal and antidiagonal neighbors. - R. H. Hardin, Dec 02 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (2,2,-1). FORMULA a(n) = 2*A007598(n). G.f.: 2*x*(1-x)/(1+x)/(1-3*x+x^2). - Colin Barker, Feb 23 2012 a(n) = F(n-1)*F(n+1) + F(n-2)*F(n+2), where F = A000045, -F(-2) = F(-1) = 1. - Bruno Berselli, Nov 03 2015 a(n) = 2*(-2*(-1)^n+(1/2*(3-sqrt(5)))^n+(1/2*(3+sqrt(5)))^n)/5. - Colin Barker, Sep 28 2016 MATHEMATICA Table[2 Fibonacci[n]^2, {n, 0, 40}] (* Bruno Berselli, Nov 03 2015 *) PROG (MAGMA) [2*Fibonacci(n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 24 2011 (PARI) a(n) = round(2*(-2*(-1)^n+(1/2*(3-sqrt(5)))^n+(1/2*(3+sqrt(5)))^n)/5) \\ Colin Barker, Sep 28 2016 (PARI) Vec(2*x*(1-x)/(1+x)/(1-3*x+x^2) + O(x^30)) \\ Colin Barker, Sep 28 2016 CROSSREFS Cf. A000045, A007598. Sequence in context: A009725 A053098 A194588 * A169888 A168506 A208966 Adjacent sequences:  A175392 A175393 A175394 * A175396 A175397 A175398 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 08:08 EST 2018. Contains 318082 sequences. (Running on oeis4.)