This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A177894 Determinant of the square matrix whose rows are the cyclic permutations of the digits of n. 8
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, -3, -8, -15, -24, -35, -48, -63, -80, 4, 3, 0, -5, -12, -21, -32, -45, -60, -77, 9, 8, 5, 0, -7, -16, -27, -40, -55, -72, 16, 15, 12, 7, 0, -9, -20, -33, -48, -65, 25, 24, 21, 16, 9, 0, -11, -24, -39, -56, 36, 35, 32, 27, 20, 11, 0, -13, -28, -45, 49, 48, 45, 40, 33, 24, 13, 0, -15, -32, 64, 63, 60, 55, 48, 39, 28, 15, 0, -17, 81, 80, 77, 72, 65, 56, 45, 32 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS David A. Corneth, Table of n, a(n) for n = 0..9999 FORMULA For n = a, det(M) = a; for n = ab, det(M) = a^2 - b^2; for n = abc, det(M) = 3abc - a^3 - b^3 - c^3; ... EXAMPLE for n=104, the (3 X 3) matrix M is   [1 0 4]   [0 4 1]   [4 1 0] and a(104) = det(M) = -65. PROG (Sage) def A177894(n):     d = n.digits()[::-1] if n > 0 else [0]     M = Matrix(lambda i, j: d[(i+j) % len(d)], nrows=len(d))     return M.determinant() # D. S. McNeil, Dec 16 2010 (PARI) a(n) = {if(n<10, return(n)); my(d = digits(n), m, s); d = concat(d, d); s = #d/2; m = matrix(s, s, i, j, d[i+j-1]); matdet(m)} \\ David A. Corneth, Jun 12 2017 CROSSREFS Coincides with A257587 for the first 100 terms, but differs thereafter. Sequence in context: A256851 A247149 A222210 * A287877 A175398 A175401 Adjacent sequences:  A177891 A177892 A177893 * A177895 A177896 A177897 KEYWORD sign,base,easy,look AUTHOR Michel Lagneau, Dec 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 08:47 EDT 2019. Contains 328292 sequences. (Running on oeis4.)