login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174123
Partial sums of A002893.
0
1, 4, 19, 112, 751, 5404, 40573, 313408, 2471167, 19791004, 160459069, 1313922064, 10847561089, 90174127684, 754009158019, 6336733626112, 53489159252671, 453258909448636, 3854034482891725, 32871004555812112, 281127047928811201
OFFSET
0,2
LINKS
Tewodros Amdeberhan and Roberto Tauraso, Two triple binomial sum supercongruences, arXiv:1607.02483 [math.NT], Jul 08 2016.
FORMULA
a(n) = Sum_{i=0..n} A002893(i).
From Sergey Perepechko, Feb 16 2011: (Start)
O.g.f.: 2*sqrt(2)/Pi/(1-z)/sqrt(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))* EllipticK(8*z^(3/2)/(1-6*z-3*z^2+sqrt((1-z)^3*(1-9*z)))).
9*(n+2)^2*a(n) - (99+86*n+19*n^2)*a(n+1) + (72+56*n+11*n^2)*a(n+2) - (n+3)^2*a(n+3)=0. (End)
a(n) ~ 3^(2*n + 7/2) / (32*Pi*n). - Vaclav Kotesovec, Jul 11 2016
MATHEMATICA
Accumulate[Table[Sum[Binomial[n, k]^2 Binomial[2k, k], {k, 0, n}], {n, 0, 20}]] (* Harvey P. Dale, May 05 2013 *)
PROG
(PARI) a(n)=sum(m=0, n, sum(k=0, m, binomial(m, k)^2*binomial(2*k, k)))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 08 2010
STATUS
approved