The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060905 E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2). 11
 1, 1, 4, 19, 110, 751, 5902, 52165, 509588, 5437729, 62828306, 780287839, 10351912276, 145944541159, 2176931651546, 34225419288421, 565282627986368, 9779830102138945, 176776613812205074, 3330780287838743575 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of functions f from a set of size n to itself such that f(f(f(x))) = f(x). - Joel B. Lewis, Dec 12 2011 REFERENCES I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 FORMULA E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 1, m = 2. a(n) = sum(sum(k^(n-k)/(n-k)!*binomial(m,k-m)*(1/2)^(k-m),k,m,n)/m!,m,1,n), n>0. - Vladimir Kruchinin, Aug 20 2010 MATHEMATICA nn=20; a=x Exp[x]; Range[0, nn]!CoefficientList[Series[Exp[a+a^2/2], {x, 0, nn}], x]  (* Geoffrey Critzer, Sep 18 2012 *) PROG (Maxima) a(n):=sum(sum(k^(n-k)/(n-k)!*binomial(m, k-m)*(1/2)^(k-m), k, m, n)/m!, m, 1, n); [Vladimir Kruchinin, Aug 20 2010] CROSSREFS Cf. A000949 - A000951, A060905 - A060913. Column k=3 of A245501. Sequence in context: A117397 A004212 A243241 * A304473 A174123 A127548 Adjacent sequences:  A060902 A060903 A060904 * A060906 A060907 A060908 KEYWORD nonn AUTHOR Vladeta Jovovic, Apr 07 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 02:45 EDT 2020. Contains 336290 sequences. (Running on oeis4.)