OFFSET
0,4
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (11,-33,33,-11,1).
FORMULA
G.f.: x^2 / ((1 - x) * (1 - 3*x + x^2) * (1 - 7*x + x^2)) = ( 4 / (1 - x) - 5 * (1 - x) / (1 - 3*x + x^2) + (1 - x) / (1 - 7*x + x^2) ) / 20.
From G. C. Greubel, Nov 29 2016: (Start)
a(n) = 11*a(n-1) - 33*a(n-2) + 33*a(n-3) - 11*a(n-4) + a(n-5).
a(n) = (12 + Fibonacci(4*n + 1) + Fibonacci(4*n + 3) - 15*Fibonacci[2*n + 1] ) / 60. (End)
EXAMPLE
x^2 + 11*x^3 + 88*x^4 + 638*x^5 + 4466*x^6 + 30856*x^7 + 212135*x^8 + ...
MATHEMATICA
Table[(4 + Fibonacci[4*n + 1]/3 + Fibonacci[4*n + 3]/3 - 5*Fibonacci[2*n + 1])/20, {n, 0, 25}] (* or *) LinearRecurrence[{11, -33, 33, -11, 1}, {0, 0, 1, 11, 88}, 25] (* G. C. Greubel, Nov 29 2016 *)
PROG
(PARI) {a(n) = (4 + fibonacci(4*n + 1)/3 + fibonacci(4*n + 3)/3 - 5 * fibonacci(2*n + 1)) / 20}
(Magma) [(4+Fibonacci(4*n+1)/3+Fibonacci(4*n + 3)/3-5* Fibonacci(2*n+1)) / 20: n in [0..25]]; // Vincenzo Librandi, Nov 30 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Feb 23 2010
STATUS
approved