This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173729 Number of symmetry classes of 3 X 3 magilatin squares with positive values < n. 4
 1, 4, 10, 24, 53, 106, 191, 328, 528, 822, 1230, 1794, 2542, 3534, 4802, 6428, 8460, 10996, 14087, 17870, 22405, 27850, 34286, 41896, 50773, 61148, 73116, 86942, 102751, 120840, 141343, 164618, 190808, 220306, 253292, 290202, 331226, 376872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 4,2 COMMENTS A magilatin square has equal row and column sums and no number repeated in any row or column. The symmetries are row and column permutations and diagonal flip. a(n) is given by a quasipolynomial of degree 5 and period 60. LINKS T. Zaslavsky, Table of n, a(n) for n = 4..10000. M. Beck and T. Zaslavsky, An enumerative geometry for magic and magilatin labellings, Ann. Combinatorics, 10 (2006), no. 4, 395-413. MR 2007m:05010. Zbl 1116.05071. M. Beck, T. Zaslavsky, Six Little Squares and How Their Numbers Grow , J. Int. Seq. 13 (2010), 10.6.2. Matthias Beck and Thomas Zaslavsky, "Six Little Squares and How their Numbers Grow" Web Site: Maple worksheets and supporting documentation. FORMULA G.f.: x^2/(1-x)^2 * { x^2/(x-1)^2 - x^3/(x-1)^3 - 2x^3/[(x-1)*(x^2-1)] - x^3/(x^3-1) - 2x^4/[(x-1)^2*(x^2-1)] - x^4/[(x-1)*(x^3-1)] - 2x^4/(x^2-1)^2 + x^5/[(x-1)^3*(x^2-1)] + x^5/[(x-1)^2*(x^3-1)] + 2x^5/[(x-1)*(x^2-1)^2] + x^5/[(x-1)*(x^4-1)] + x^5/[(x^2-1)*(x^3-1)] + x^5/(x^5-1) + 2x^6/[(x-1)*(x^2-1)*(x^3-1)] + 2x^6/[(x^2-1)*(x^4-1)] + x^6/(x^2-1)^3 + x^6/(x^3-1)^2 + x^7/[(x^3-1)*(x^4-1)] + x^7/[(x^2-1)*(x^5-1)] + x^7/[(x^2-1)^2*(x^3-1)] + x^8/[(x^3-1)*(x^5-1)] } G.f.: x^4*(1 + 4*x + 8*x^2 + 14*x^3 + 25*x^4 + 41*x^5 + 52*x^6 + 54*x^7 + 43*x^8 + 27*x^9 + 13*x^10 + 10*x^11 + 16*x^12 + 23*x^13 + 20*x^14 + 9*x^15)/((1 + x^2)*(1 + x)^3*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)*(1 - x)^6). - L. Edson Jeffery, Sep 10 2017 MATHEMATICA CoefficientList[Series[x^4*(1 + 4*x + 8*x^2 + 14*x^3 + 25*x^4 + 41*x^5 + 52*x^6 + 54*x^7 + 43*x^8 + 27*x^9 + 13*x^10 + 10*x^11 + 16*x^12 + 23*x^13 + 20*x^14 + 9*x^15)/((1 + x^2)*(1 + x)^3*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)*(1 - x)^6), {x, 0, 41}], x] (* L. Edson Jeffery, Sep 10 2017 *) CROSSREFS Cf. A173548 (total number of squares, A173549 (squares counted by magic sum), A173730 (symmetry types by magic sum). Sequence in context: A162588 A280541 A080615 * A097976 A279851 A266367 Adjacent sequences:  A173726 A173727 A173728 * A173730 A173731 A173732 KEYWORD nonn AUTHOR Thomas Zaslavsky, Mar 04 2010, Apr 24 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 08:57 EDT 2019. Contains 328345 sequences. (Running on oeis4.)