OFFSET
0,2
COMMENTS
{log_2 a(n)} converges to about 0.513441 and equivalently 2^{log_2 a(n)}-1 converges to about 1.427451, and the corresponding values T(i)/i^2 converge to about 0.4513058.
For all values listed, a(n) = 2 * a(n-1) + c(n), where c(n) is a small positive integer, except for a(4) where c(4)=-3. - Robert Price, Aug 16 2015
LINKS
Robert Price, Table of n, a(n) for n = 0..169
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Steven R. Finch, Toothpicks and Live Cells, July 21, 2015. [Cached copy, with permission of the author]
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
EXAMPLE
The values of A139250(i)/i^2 for i = 1 .., 15 are 1.0, 0.7500000000, 0.7777777778, 0.6875000000, 0.6000000000, 0.6388888889, 0.7142857143, 0.6718750000, 0.5802469136, 0.5500000000, 0.5537190083, 0.5486111111, 0.5621301775, 0.6275510204, 0.6888888889, 0.6679687500. The minimal value for 4 <= i <= 7 is 0.6000000000 at i=5.
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Jubin, Jan 22 2010, Feb 06 2010
EXTENSIONS
a(26)-a(33) from Robert Price, Aug 18 2012
STATUS
approved