login
A368969
Expansion of (1/x) * Series_Reversion( x * (1-x+x^2)^2 ).
4
1, 2, 5, 12, 22, 0, -284, -1938, -9367, -36938, -118105, -260130, 56637, 4890560, 35945616, 186674620, 782890326, 2632462236, 5987222046, -2241224328, -129137211280, -967479390360, -5145272296080, -22060975744080, -75535676951124, -172915138783080
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(2*n+k+1,k) * binomial(3*n-k+1,n-2*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x+x^2)^2)/x)
(PARI) a(n, s=2, t=2, u=0) = sum(k=0, n\s, (-1)^k*binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A368961.
Sequence in context: A170927 A182201 A106331 * A116727 A116729 A048840
KEYWORD
sign
AUTHOR
Seiichi Manyama, Jan 10 2024
STATUS
approved