login
A170705
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.
1
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170743, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 276. - Vincenzo Librandi, Dec 08 2012
LINKS
Index entries for linear recurrences with constant coefficients, signature (22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, -253).
FORMULA
G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(253*t^50 - 22*t^49 - 22*t^48 - 22*t^47 - 22*t^46 - 22*t^45 -
22*t^44 - 22*t^43 - 22*t^42 - 22*t^41 - 22*t^40 - 22*t^39 - 22*t^38 -
22*t^37 - 22*t^36 - 22*t^35 - 22*t^34 - 22*t^33 - 22*t^32 - 22*t^31 -
22*t^30 - 22*t^29 - 22*t^28 - 22*t^27 - 22*t^26 - 22*t^25 - 22*t^24 -
22*t^23 - 22*t^22 - 22*t^21 - 22*t^20 - 22*t^19 - 22*t^18 - 22*t^17 -
22*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 -
22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 -
22*t + 1)
MATHEMATICA
With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-22 t^Range[49]] + 253t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 200}], t]] (* Vincenzo Librandi, Dec 08 2012 *)
coxG[{50, 253, -22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 31 2016 *)
CROSSREFS
Sequence in context: A170561 A170609 A170657 * A170743 A218726 A203487
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved