login
A170703
Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^50 = I.
1
1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024782, 366957381520422, 7706105011928862, 161828205250506102, 3398392310260628142, 71366238515473190982
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170741, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
About the initial comment, first disagreement is at index 50 and the difference is 231. - Vincenzo Librandi, Dec 08 2012
LINKS
Index entries for linear recurrences with constant coefficients, signature (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, -210).
FORMULA
G.f. (t^50 + 2*t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 +
2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(210*t^50 - 20*t^49 - 20*t^48 - 20*t^47 - 20*t^46 - 20*t^45 -
20*t^44 - 20*t^43 - 20*t^42 - 20*t^41 - 20*t^40 - 20*t^39 - 20*t^38 -
20*t^37 - 20*t^36 - 20*t^35 - 20*t^34 - 20*t^33 - 20*t^32 - 20*t^31 -
20*t^30 - 20*t^29 - 20*t^28 - 20*t^27 - 20*t^26 - 20*t^25 - 20*t^24 -
20*t^23 - 20*t^22 - 20*t^21 - 20*t^20 - 20*t^19 - 20*t^18 - 20*t^17 -
20*t^16 - 20*t^15 - 20*t^14 - 20*t^13 - 20*t^12 - 20*t^11 - 20*t^10 -
20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 -
20*t + 1)
MATHEMATICA
With[{num = Total[2 t^Range[49]] + t^50 + 1, den = Total[-20 t^Range[49]] + 210t^50 + 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Vincenzo Librandi, Dec 08 2012 *)
CROSSREFS
Sequence in context: A170559 A170607 A170655 * A170741 A218724 A276644
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved