login
A170657
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.
0
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170743, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, -253).
FORMULA
G.f. (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 +
2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(253*t^49 - 22*t^48 - 22*t^47 - 22*t^46 - 22*t^45 - 22*t^44 - 22*t^43
- 22*t^42 - 22*t^41 - 22*t^40 - 22*t^39 - 22*t^38 - 22*t^37 - 22*t^36 -
22*t^35 - 22*t^34 - 22*t^33 - 22*t^32 - 22*t^31 - 22*t^30 - 22*t^29 -
22*t^28 - 22*t^27 - 22*t^26 - 22*t^25 - 22*t^24 - 22*t^23 - 22*t^22 -
22*t^21 - 22*t^20 - 22*t^19 - 22*t^18 - 22*t^17 - 22*t^16 - 22*t^15 -
22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 -
22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1)
MATHEMATICA
coxG[{49, 253, -22}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 02 2023 *)
CROSSREFS
Sequence in context: A170513 A170561 A170609 * A170705 A170743 A218726
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved