login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A169452 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I. 489
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The initial terms coincide with those of A003949, although the two sequences are eventually different.

Computed with MAGMA using commands similar to those used to compute A154638.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).

FORMULA

G.f.: (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^33 - 5*t^32 - 5*t^31 - 5*t^30 - 5*t^29 - 5*t^28 - 5*t^27 - 5*t^26 - 5*t^25 - 5*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).

MAPLE

gf:= (t+1) *(t^2+t+1) *(t^10+t^9+t^8+t^7+t^6+t^5+t^4+t^3+t^2+t+1) *(t^20-t^19+t^17-t^16 +t^14-t^13+t^11-t^10+t^9-t^7+t^6-t^4+t^3- t+1) / (15*t^33-5*t^32-5*t^31-5*t^30-5*t^29 -5*t^28-5*t^27 -5*t^26-5*t^25 -5*t^24 -5*t^23-5*t^22-5*t^21-5*t^20 -5*t^19-5*t^18-5*t^17 -5*t^16 -5*t^15 -5*t^14-5*t^13-5*t^12-5*t^11-5*t^10-5*t^9-5*t^8-5*t^7 -5*t^6 -5*t^5-5*t^4 -5*t^3-5*t^2-5*t+1):

S:= series(gf, t, 101):

seq(coeff(S, t, j), j=0..100); # Robert Israel, Aug 26 2014

MATHEMATICA

coxG[{pwr_, c1_, c2_, trms_:20}]:=Module[{num=Total[2t^Range[pwr-1]]+t^pwr+ 1, den =Total[c2*t^Range[pwr-1]]+c1*t^pwr+1}, CoefficientList[ Series[ num/den, {t, 0, trms}], t]]; coxG[{33, 15, -5, 30}]

(* "pwr" is the largest exponent in the g.f.;

"c1" is the first coefficient in the denominator of the g.f.;

"c2" is the second coefficient in the denominator of the g.f.;

"trms" is the number of terms desired (with a default number of 20) *)

(* Harvey P. Dale, Aug 16 2014 *)

CROSSREFS

Sequence in context: A170544 A170592 A170640 A170688 A003949 A252700 A033133

Adjacent sequences:  A169449 A169450 A169451 * A169453 A169454 A169455

KEYWORD

nonn,easy

AUTHOR

John Cannon and N. J. A. Sloane, Dec 03 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 09:12 EDT 2018. Contains 313756 sequences. (Running on oeis4.)