

A169817


nth prime with both a prime number of 0's and a prime number of 1's in binary representation minus nth semiprime with both a prime number of 0's and a prime number of 1's in their binary representation.


0



8, 9, 16, 19, 54, 77, 72, 71, 82, 72, 64, 66, 74, 79, 64, 63, 72, 77, 78, 93, 86, 88, 95, 102, 209, 218, 246, 245, 240, 258, 281, 278, 285, 304, 323, 238, 182, 187, 162, 142, 155, 136, 135, 124, 130, 139, 142, 138, 142, 134, 148, 166, 167, 174, 176, 168, 177, 174
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..58.


FORMULA

a(n)=A144214(n)A178350(n).


EXAMPLE

a(1)=A144214(1)A178350(1)=179=8.


MATHEMATICA

pn0Q[n_]:=PrimeQ[DigitCount[n, 2, 1]]&&PrimeQ[DigitCount[n, 2, 0]]; nn=600; Module[{ps=Select[Prime[Range[nn]], pn0Q], sps=Select[Range[nn], PrimeOmega[#]==2&&pn0Q[#]&], minlen}, minlen=Min[Length[ps], Length[ sps]]; First[#]Last[#]&/@Thread[{Take[ps, minlen], Take[sps, minlen]}]] (* Harvey P. Dale, May 07 2012 *)


CROSSREFS

Cf. A014499, A035103, A178064, A178065.
Sequence in context: A171425 A143720 A231016 * A227649 A227648 A192636
Adjacent sequences: A169814 A169815 A169816 * A169818 A169819 A169820


KEYWORD

nonn


AUTHOR

JuriStepan Gerasimov, May 25 2010


EXTENSIONS

Corrected (96 replaced by 86, all numbers from a(27) on replaced) by R. J. Mathar, Jun 04 2010


STATUS

approved



