This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A169815 a(n) = lcm(1, 2, ..., n)^(n-1)/(n!*(n-1)!). 0
 1, 1, 3, 12, 4500, 9000, 1512630000, 1452124800000, 111152892816000000, 3112280998848000000, 1849326140334157445511936000000, 388358489470173063557506560000000, 1607761625123067582500188167647056604083200000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Consider a natural number n. Let t(k) denote the least common multiple (LCM) of {1, 2, ..., k} and Q(t(k)) denote the quotient of n when divided by t(k). Then the number M(n,k) of partitions of n with k parts can be expressed as a polynomial in Q(t(k)) with the leading coefficient (that is, the coefficient of Q(t(k))^(k-1)) c(k-1, k). REFERENCES S. R. Park, J. Bae, H. G. Kang and I. Song, "On the polynomial representation for the number of partitions with fixed length", Mathematics of Computation, vol. 77, no. 262, pp. 1135-1151, 2008. LINKS MATHEMATICA f[n_] := n (LCM @@ Range@n)^(n - 1)/n!^2; Array[f, 15] (* Robert G. Wilson v, May 30 2010 *) CROSSREFS Sequence in context: A216897 A262541 A036300 * A239891 A226129 A167368 Adjacent sequences:  A169812 A169813 A169814 * A169816 A169817 A169818 KEYWORD nonn AUTHOR Iickho Song (i.song(AT)ieee.org), May 25 2010 EXTENSIONS a(9) onwards from Robert G. Wilson v, May 30 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 18 15:26 EDT 2019. Contains 325143 sequences. (Running on oeis4.)