login
A178064
Number of 0's in binary representation of n-th semiprime.
3
2, 1, 2, 2, 1, 0, 2, 2, 2, 2, 4, 4, 3, 3, 2, 2, 3, 2, 1, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 2, 1, 6, 5, 5, 4, 4, 3, 5, 5, 3, 3, 2, 5, 4, 4, 4, 4, 2, 3, 2, 5, 4, 4, 3, 3, 3, 4, 3, 3, 2, 3, 3, 2, 2, 4, 2, 2, 1, 2, 1, 1, 6, 6, 6, 5, 6, 5, 3, 6, 5, 4, 5, 4, 4, 4, 3, 5, 4, 4, 2, 6, 5, 5, 4
OFFSET
1,1
FORMULA
a(n) = A023416(A001358(n)). - R. J. Mathar, May 23 2010
EXAMPLE
a(1)=2 because 1st semiprime = 4 = 100_2.
a(2)=1 because 2nd semiprime = 6 = 110_2.
MAPLE
A023416 := proc(n) a := 0 ; for d in convert(n, base, 2) do if d = 0 then a := a+1 ; end if; end do; a ; end proc:
A178064 := proc(n) A023416(A001358(n)) ; end proc:
seq(A178064(n), n=1..120) ; # R. J. Mathar, May 23 2010
MATHEMATICA
DigitCount[#, 2, 0] & /@ Select[Range@ 328, PrimeOmega@ # == 2 &] (* Michael De Vlieger, Feb 02 2015 *)
CROSSREFS
Sequence in context: A063251 A060208 A004570 * A145363 A071429 A264398
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(56) corrected by R. J. Mathar, May 23 2010
STATUS
approved