login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A169819 a(n) = total number of distinct divisors of n and all of its substrings. 3
1, 2, 2, 3, 2, 4, 2, 4, 3, 5, 2, 6, 3, 5, 4, 7, 3, 8, 4, 7, 5, 4, 4, 8, 4, 6, 6, 7, 5, 9, 3, 7, 4, 6, 5, 9, 4, 7, 5, 9, 4, 9, 5, 6, 8, 7, 5, 10, 7, 7, 5, 7, 4, 10, 4, 11, 6, 7, 5, 13, 5, 6, 8, 9, 7, 8, 6, 9, 7, 9, 3, 13, 4, 6, 7, 9, 4, 11, 5, 11, 8, 6, 6, 13, 7, 8, 8, 8, 7, 13, 6, 8, 5, 7, 6, 13, 5, 10, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Note that we are counting 0 when it occurs as a digit of n, but are not counting any other integers as divisors of 0. (If we did, there would be infinitely many of them; every integer divides 0.) [From Franklin T. Adams-Watters, May 29 2010]

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

a(56) = 11 because divisors of 56 are d1= {1, 2, 4, 7, 8, 14, 28, 56}; 56 has two substrings 5,6; divisors of 5 are d2= {1, 5}, and divisors of 6 are d3= {1, 2, 3,6} ; union of d1,d2,d3 gives 11 distinct divisors of 56 and all of its substrings: {1, 2, 3, 4, 5, 6, 7, 8, 14, 28, 56}.

MATHEMATICA

Table[id = IntegerDigits[n]; FLA = Flatten[Table[Partition[id, k, 1], {k, Length[id]}], 1]; fd = Union[FromDigits /@ FLA]; dv = Length[Union[Flatten[Divisors /@ fd]]], {n, 200}]

CROSSREFS

Cf. A177834

Sequence in context: A144373 A086292 A076640 * A134681 A218703 A144372

Adjacent sequences:  A169816 A169817 A169818 * A169820 A169821 A169822

KEYWORD

base,nonn

AUTHOR

Zak Seidov, May 28 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 22 15:27 EST 2017. Contains 295089 sequences.