login
A168422
Number triangle with row sums given by quadruple factorial numbers A001813.
2
1, 1, 1, 7, 4, 1, 71, 39, 9, 1, 1001, 536, 126, 16, 1, 18089, 9545, 2270, 310, 25, 1, 398959, 208524, 49995, 7120, 645, 36, 1, 10391023, 5394991, 1301139, 190435, 18445, 1197, 49, 1, 312129649, 161260336, 39066076, 5828704, 589750, 41776, 2044, 64, 1
OFFSET
0,4
COMMENTS
Reversal of coefficient array for the polynomials P(n,x) = Sum_{k=0..n} (C(n+k,2k)*(2k)!/k!)*x^k*(1-x)^(n-k).
Note that P(n,x) = Sum_{k=0..n} A113025(n,k)*x^k*(1-x)^(n-k). Row sums are A001813.
LINKS
FORMULA
T(n,k) = (1/k!)*Sum_{j=k..n} (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!).
EXAMPLE
Triangle begins
1
1 1
7 4 1
71 39 9 1
1001 536 126 16 1
18089 9545 2270 310 25 1
398959 208524 49995 7120 645 36 1
10391023 5394991 1301139 190435 18445 1197 49 1
312129649 161260336 39066076 5828704 589750 41776 2044 64 1
Production matrix begins
1 1
6 3 1
40 20 5 1
336 168 42 7 1
3456 1728 432 72 9 1
42240 21120 5280 880 110 11 1
599040 299520 74880 12480 1560 156 13 1
9676800 4838400 1209600 201600 25200 2520 210 15 1
Complete this with a top row (1,0,0,0,...) and invert: we get
1
-1 1
-3 -3 1
-5 -5 -5 1
-7 -7 -7 -7 1
-9 -9 -9 -9 -9 1
-11 -11 -11 -11 -11 -11 1
-13 -13 -13 -13 -13 -13 -13 1
-15 -15 -15 -15 -15 -15 -15 -15 1
-17 -17 -17 -17 -17 -17 -17 -17 -17 1
PROG
(SageMath)
def T(n, k):
return(sum((-1)^(j-k) * binomial(2*n-j, n) * binomial(n, j)\
* binomial(j, k) * factorial(n-j)\
for j in range(k, n+1))) # William P. Orrick, Mar 24 2023
(PARI) T(n, k)={sum(j=k, n, (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!))/k!} \\ Andrew Howroyd, Mar 24 2023
CROSSREFS
Column 1 is |A002119|.
Sum_{k=0..n} T(n,k) * 2^k, is A001517(n).
Cf. A079267.
Sequence in context: A258330 A011407 A021907 * A187056 A103240 A155531
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Nov 25 2009
EXTENSIONS
Corrected and extended by William P. Orrick, Mar 24 2023
STATUS
approved