OFFSET
0,4
COMMENTS
LINKS
William P. Orrick, Table of n, a(n) for n = 0..10010
FORMULA
T(n,k) = (1/k!)*Sum_{j=k..n} (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!).
EXAMPLE
Triangle begins
1
1 1
7 4 1
71 39 9 1
1001 536 126 16 1
18089 9545 2270 310 25 1
398959 208524 49995 7120 645 36 1
10391023 5394991 1301139 190435 18445 1197 49 1
312129649 161260336 39066076 5828704 589750 41776 2044 64 1
Production matrix begins
1 1
6 3 1
40 20 5 1
336 168 42 7 1
3456 1728 432 72 9 1
42240 21120 5280 880 110 11 1
599040 299520 74880 12480 1560 156 13 1
9676800 4838400 1209600 201600 25200 2520 210 15 1
Complete this with a top row (1,0,0,0,...) and invert: we get
1
-1 1
-3 -3 1
-5 -5 -5 1
-7 -7 -7 -7 1
-9 -9 -9 -9 -9 1
-11 -11 -11 -11 -11 -11 1
-13 -13 -13 -13 -13 -13 -13 1
-15 -15 -15 -15 -15 -15 -15 -15 1
-17 -17 -17 -17 -17 -17 -17 -17 -17 1
PROG
(SageMath)
def T(n, k):
return(sum((-1)^(j-k) * binomial(2*n-j, n) * binomial(n, j)\
* binomial(j, k) * factorial(n-j)\
for j in range(k, n+1))) # William P. Orrick, Mar 24 2023
(PARI) T(n, k)={sum(j=k, n, (-1)^(j-k)*(2*n-j)!/((n-j)!*(j-k)!))/k!} \\ Andrew Howroyd, Mar 24 2023
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Nov 25 2009
EXTENSIONS
Corrected and extended by William P. Orrick, Mar 24 2023
STATUS
approved