|
|
A168419
|
|
a(n) = 9*floor(n/2).
|
|
1
|
|
|
0, 9, 9, 18, 18, 27, 27, 36, 36, 45, 45, 54, 54, 63, 63, 72, 72, 81, 81, 90, 90, 99, 99, 108, 108, 117, 117, 126, 126, 135, 135, 144, 144, 153, 153, 162, 162, 171, 171, 180, 180, 189, 189, 198, 198, 207, 207, 216, 216, 225, 225, 234, 234, 243, 243, 252, 252, 261
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
|
|
FORMULA
|
a(n) = 9*n - a(n-1) - 9, with n>1, a(1)=0.
a(n) = (9/4)*(-1 + (-1)^n + 2*n). - Paolo P. Lava, Nov 27 2009
G.f.: 9*x^2/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 19 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 19 2013
E.g.f.: (9/4)*(1 + (2*x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016
|
|
MATHEMATICA
|
Table[9 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[9 x/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
LinearRecurrence[{1, 1, -1}, {0, 9, 9}, 60] (* Harvey P. Dale, Apr 21 2019 *)
|
|
PROG
|
(MAGMA) [9*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
|
|
CROSSREFS
|
Cf. A004526, A017377.
Sequence in context: A040073 A003886 A065999 * A309463 A242892 A112440
Adjacent sequences: A168416 A168417 A168418 * A168420 A168421 A168422
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Vincenzo Librandi, Nov 25 2009
|
|
EXTENSIONS
|
New definition by Vincenzo Librandi, Sep 19 2013
|
|
STATUS
|
approved
|
|
|
|