OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..695
Index entries for linear recurrences with constant coefficients, signature (26,26,26,26,26,26,26,26,-351).
FORMULA
G.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +1)/(351*t^9 - 26*t^8 - 26*t^7 - 26*t^6 - 26*t^5 - 26*t^4 - 26*t^3 -26*t^2 - 26*t + 1).
MAPLE
seq(coeff(series((x^9+2*x^8+2*x^7+2*x^6+2*x^5+2*x^4+2*x^3+2*x^2+2*x+1)/( 351*x^9-26*x^8-26*x^7-26*x^6-26*x^5-26*x^4-26*x^3-26*x^2-26*x+1), x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 21 2018
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10), {t, 0, 30}], t] (* G. C. Greubel, Oct 20 2018 *)
coxG[{9, 351, -26}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 16 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10)) \\ G. C. Greubel, Oct 20 2018
(Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10) )); // G. C. Greubel, Oct 20 2018
(Sage)
def A165456_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^9)/(1-27*t+377*t^9-351*t^10)).list()
A165456_list(20) # G. C. Greubel, Sep 16 2019
(GAP) a:=[28, 756, 20412, 551124, 14880348, 401769396, 10847773692, 292889889684, 7908027021090];; for n in [10..20] do a[n]:=326*Sum([1..8], j-> a[n-j]) -351*a[n-9]; od; Concatenation([1], a); # G. C. Greubel, Sep 16 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved