login
A165455
Primes p such that p^2 is a sum of three distinct positive cubes.
1
53, 59, 71, 163, 167, 251, 523, 577, 613, 643, 773, 787, 811, 827, 863, 881, 883, 919, 937, 1097, 1117, 1301, 1567, 1607, 1709, 1777, 1867, 1873, 1877, 1889, 1931, 2161, 2237, 2309, 2447, 2521, 2591, 2647, 2687, 2719, 2843, 2897, 2969, 3011, 3079, 3163
OFFSET
1,1
FORMULA
A000040 INTERSECT A165454.
{p: p in A000040 and p^2 in A024975}. [R. J. Mathar, Oct 07 2009]
MATHEMATICA
lst={}; Do[Do[Do[d=Sqrt[a^3+b^3+c^3]; If[d<=834&&IntegerQ[d]&&PrimeQ[d], AppendTo[lst, d]], {c, b+1, 5!, 1}], {b, a+1, 5!, 1}], {a, 5!}]; Union@lst
CROSSREFS
Sequence in context: A112418 A059497 A059472 * A180553 A079593 A086082
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended beyond 827 by R. J. Mathar, Oct 07 2009
Title corrected by Jeppe Stig Nielsen, Jan 26 2015
STATUS
approved