This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163641 The radical of the swinging factorial A056040. 3
 1, 1, 2, 6, 6, 30, 10, 70, 70, 210, 42, 462, 462, 6006, 858, 4290, 4290, 72930, 24310, 461890, 92378, 1939938, 176358, 4056234, 1352078, 6760390, 520030, 1560090, 222870, 6463230, 6463230, 200360130 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The radical of n\$ is the product of the prime numbers dividing n\$. It is the largest squarefree divisor of n\$, and so also described as the squarefree kernel of n\$. REFERENCES Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Peter Luschny, Swinging Factorial. FORMULA a(n) = rad(n\$). EXAMPLE 11\$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 2*3*7*11 = 462. MAPLE a := proc(n) local p; mul(p, p=numtheory[factorset](n!/iquo(n, 2)!^2)) end: MATHEMATICA sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *) CROSSREFS Bisections give: A080397 (even part), A163640 (odd part). Cf. A056040. Sequence in context: A077139 A068629 A144361 * A216850 A070889 A072744 Adjacent sequences:  A163638 A163639 A163640 * A163642 A163643 A163644 KEYWORD nonn AUTHOR Peter Luschny, Aug 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.