This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163644 Product of primes which do not exceed n and do not divide the swinging factorial n\$ (A056040). 1
 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 5, 5, 5, 5, 35, 7, 7, 7, 21, 21, 105, 5, 55, 55, 165, 33, 429, 143, 1001, 1001, 1001, 1001, 1001, 91, 1547, 221, 221, 221, 4199, 323, 323, 323, 2261, 2261, 24871, 24871, 572033, 572033, 572033, 81719, 408595, 24035, 312455 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS a(n) = primorial(n) / rad(n\$) = A034386(n) / A163641(n). REFERENCES Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Peter Luschny, Swinging Factorial. EXAMPLE a(20) = 105 because in the prime-factorization of 20\$ the primes 3, 5 and 7 are missing and 3*5*7 = 105. MAPLE a := proc(n) local p; mul(p, p=select(isprime, {\$1..n}) minus numtheory[factorset](n!/iquo(n, 2)!^2)) end: MATHEMATICA A034386[x_] := Apply[Times, Table[Prime[w], {w, 1, PrimePi[x]}]]; sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f + 1, n - f]/f!]; A163641[0] = 1; A163641[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Join[{1}, Table[A034386[n]/A163641[n], {n, 1, 50}]] (* G. C. Greubel, Aug 01 2017 *) CROSSREFS Cf. A056040, A034386, A163641, A056610. Sequence in context: A123073 A059289 A201277 * A290348 A014465 A226645 Adjacent sequences:  A163641 A163642 A163643 * A163645 A163646 A163647 KEYWORD nonn AUTHOR Peter Luschny, Aug 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.