This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163640 The radical of the swinging factorial A056040 for odd indices. 1
 1, 6, 30, 70, 210, 462, 6006, 4290, 72930, 461890, 1939938, 4056234, 6760390, 1560090, 6463230, 200360130, 2203961430, 907513530, 33578000610, 22974421470, 941951280270 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Let \$ denote the swinging factorial. a(n) is the radical of (2*n+1)\$ which is the product of the prime numbers dividing (2*n+1)\$. It is the largest squarefree divisor of (2*n+1)\$, and so also described as the squarefree kernel of (2*n+1)\$. REFERENCES Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008. LINKS Peter Luschny, Swinging Factorial. EXAMPLE (2*5+1)\$ = 2772 = 2^2*3^2*7*11. Therefore a(5) = 2*3*7*11 = 462. MAPLE a := proc(n) local p; mul(p, p=numtheory[factorset]((2*n+1)!/iquo(2*n+1, 2)!^2)) end: MATHEMATICA sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Times @@ FactorInteger[sf[2*n + 1]][[All, 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 30 2013 *) CROSSREFS A056040(n) = n\$, A163641(n) = rad(n\$), A080397(n) = rad((2n)\$). Sequence in context: A056835 A056836 A277521 * A199130 A152743 A215906 Adjacent sequences:  A163637 A163638 A163639 * A163641 A163642 A163643 KEYWORD nonn AUTHOR Peter Luschny, Aug 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 15 09:12 EDT 2018. Contains 313756 sequences. (Running on oeis4.)