%I #14 May 08 2020 17:44:31
%S 1,1,2,6,6,30,10,70,70,210,42,462,462,6006,858,4290,4290,72930,24310,
%T 461890,92378,1939938,176358,4056234,1352078,6760390,520030,1560090,
%U 222870,6463230,6463230,200360130
%N The radical of the swinging factorial A056040.
%C The radical of n$ is the product of the prime numbers dividing n$. It is the largest squarefree divisor of n$, and so also described as the squarefree kernel of n$.
%H G. C. Greubel, <a href="/A163641/b163641.txt">Table of n, a(n) for n = 0..1000</a>
%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html"> Swinging Factorial.</a>
%F a(n) = rad(n$).
%e 11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 2*3*7*11 = 462.
%p a := proc(n) local p; mul(p,p=numtheory[factorset](n!/iquo(n,2)!^2)) end:
%t sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Times @@ FactorInteger[sf[n]][[All, 1]]; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Jul 26 2013 *)
%Y Bisections give: A080397 (even part), A163640 (odd part).
%Y Cf. A056040.
%K nonn
%O 0,3
%A _Peter Luschny_, Aug 02 2009