login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161935
28-gonal numbers: a(n) = n*(13*n - 12).
14
0, 1, 28, 81, 160, 265, 396, 553, 736, 945, 1180, 1441, 1728, 2041, 2380, 2745, 3136, 3553, 3996, 4465, 4960, 5481, 6028, 6601, 7200, 7825, 8476, 9153, 9856, 10585, 11340, 12121, 12928, 13761, 14620, 15505, 16416, 17353, 18316, 19305, 20320, 21361, 22428, 23521
OFFSET
0,3
COMMENTS
The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
These are also the star 14-gonal numbers: a(n) = A051866(n) + 14*A000217(n-1). Luciano Ancora, Apr 04 2015
FORMULA
a(n+1) = a(n) + 26*n + 1. - Vincenzo Librandi, Nov 30 2010
a(n) = A000217(n) + 25*A000217(n-1). - Luciano Ancora, Apr 04 2015
Product_{n>=2} (1 - 1/a(n)) = 13/14. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 13*x^2). - Nikolaos Pantelidis, Feb 05 2023
From Elmo R. Oliveira, Dec 14 2024: (Start)
G.f.: x*(1 + 25*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
EXAMPLE
G.f. = x + 28*x^2 + 81*x^3 + 160*x^4 + 265*x^5 + 396*x^6 + 553*x^7 + ...
MATHEMATICA
lst={}; Do[a=13*n^2+14*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst
Table[n*(13*n - 12), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
PROG
(Magma) [ (n+1)*(13*n+1): n in[0..50] ];
(PARI) {a(n) = n*(13*n - 12)}; /* Michael Somos, Dec 07 2016 */
KEYWORD
easy,nonn,changed
AUTHOR
Pierre Gayet, Jun 22 2009
EXTENSIONS
Edited by N. J. A. Sloane, Dec 07 2016 at the suggestion of Daniel Sterman.
Definition simplified by Omar E. Pol, Aug 10 2018
STATUS
approved