This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161938 a(n) = ((3+sqrt(2))*(2+sqrt(2))^n + (3-sqrt(2))*(2-sqrt(2))^n)/2. 2
 3, 8, 26, 88, 300, 1024, 3496, 11936, 40752, 139136, 475040, 1621888, 5537472, 18906112, 64549504, 220385792, 752444160, 2569005056, 8771131904, 29946517504, 102243806208, 349082189824, 1191841146880, 4069200207872 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Second binomial transform of A162255. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = 4*a(n-1) - 2*a(n-2) for n>1; a(0) = 3; a(1) = 8. G.f.: (3-4*x)/(1-4*x+2*x^2). From G. C. Greubel, Sep 28 2018: (start) a(2*n) = 2^(n-1) * (Q(2*n +1) + 2*Q(2*n)), Q(m) = Pell-Lucas numbers = A002203(m). a(2*n+1) = 2^(n-1) * (P(2*n+2) + 2*P(2*n+1)), P(m) = Pell numbers = A000129(m). (End) MAPLE seq(coeff(series((3-4*x)/(1-4*x+2*x^2), x, n+1), x, n), n = 0..25); # Muniru A Asiru, Sep 28 2018 MATHEMATICA CoefficientList[Series[(3-4*x)/(1-4*x+2*x^2), {x, 0, 50}], x] (* G. C. Greubel, Sep 28 2018 *) PROG (MAGMA) Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((3+r)*(2+r)^n+(3-r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009 (MAGMA) I:=[3, 8]; [n le 2 select I[n] else 4*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 28 2018 (PARI) x='x+O('x^50); Vec((3-4*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 28 2018 (GAP) a:=[3, 8];; for n in [3..25] do a[n]:=4*a[n-1]-2*a[n-2]; od; a; # Muniru A Asiru, Sep 28 2018 CROSSREFS Cf. A162255, A135532, A083878. Sequence in context: A148812 A148813 A148814 * A189177 A151444 A151458 Adjacent sequences:  A161935 A161936 A161937 * A161939 A161940 A161941 KEYWORD nonn AUTHOR Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009, Jun 29 2009 EXTENSIONS Edited and extended beyond a(5) by Klaus Brockhaus, Jul 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 11:42 EDT 2019. Contains 328296 sequences. (Running on oeis4.)