OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2-77*y^2=1,
with x=(77*k+9)/2 and y= A*B/2, case C=7 in A160682.
LINKS
Index entries for linear recurrences with constant coefficients, signature (80,-80,1)
FORMULA
k(t+3)=80*(k(t+2)-k(t+1))+k(t).
k(t)=((9+w)*((79+9*w)/2)^(t-1)+(9-w)*((79-9*w)/2)^(t-1))/154 where w=sqrt(77).
k(t) = floor of ((9+w)*((79+9*w)/2)^(t-1))/154.
G.f.: -9*x^2/((x-1)*(x^2-79*x+1)).
MAPLE
t:=0: for n from 0 to 1000000 do a:=sqrt(7*n+1): b:=sqrt(11*n+1):
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do:
MATHEMATICA
LinearRecurrence[{80, -80, 1}, {0, 9, 720}, 20] (* Harvey P. Dale, Jun 07 2023 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved