OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2-165*y^2=1,
with x=(165*k+13)/2 and y=A*B/2, case C=11 in A160682.
LINKS
Index entries for linear recurrences with constant coefficients, signature (168,-168,1).
FORMULA
k(t+3)=168*(k(t+2)-k(t+1))+k(t).
k(t)=((13+w)*((167+13*w)/2)^(t-1)+(13-w)*((167-13*w)/2)^(t-1))/330 where w=sqrt(165).
k(t) = floor of ((13+w)*((167+13*w)/2)^(t-1))/330;
G.f.: -13*x^2/((x-1)*(x^2-167*x+1)).
MAPLE
t:=0: for n from 0 to 1000000 do a:=sqrt(11*n+1): b:=sqrt(15*n+1):
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do:
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved