OFFSET
1,2
COMMENTS
The 2 equations are equivalent to the Pell equation x^2-117*y^2=1,
with x=(117*k+11)/2 and y=A*B/2, case C=9 in A160682.
LINKS
Index entries for linear recurrences with constant coefficients, signature (120,-120,1).
FORMULA
k(t+3)=120*(k(t+2)-k(t+1))+k(t).
k(t)=((11+w)*((119+11*w)/2)^(t-1)+(11-w)*((119-11*w)/2)^(t-1))/234 where w=sqrt(117).
k(t) = floor of ((11+w)*((119+11*w)/2)^(t-1))/234;
G.f.: -11*x^2/((x-1)*(x^2-119*x+1)).
MAPLE
t:=0: for n from 0 to 1000000 do a:=sqrt(9*n+1): b:=sqrt(13*n+1):
if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t, n, a, b): end if: end do:
MATHEMATICA
LinearRecurrence[{120, -120, 1}, {0, 1320, 157080, 18691211}, 20] (* Harvey P. Dale, Apr 01 2024 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Weisenhorn, Jun 14 2009
EXTENSIONS
Edited, extended by R. J. Mathar, Sep 02 2009
STATUS
approved