login
A160832
Expansion of eta(q)*eta(q^2)*eta(q^4), where eta(q) = Product((1-q^m), m=1..oo).
4
1, -1, -2, 1, -1, 3, 3, -1, -1, -3, 2, -3, -2, 0, 0, 1, 2, 4, -3, 5, 3, -2, -4, 0, -2, -1, 1, -2, 2, -6, -3, -1, 3, 4, 5, -3, 2, 2, 3, 4, -7, 1, 4, -1, -3, 1, -4, 0, -4, 1, -2, 1, -2, -3, 1, -5, 0, 4, 1, 3, 5, 1, 4, -1, 7, -5, -2, 0, 0, -1, -2, 6, 8, -5, -5, -4, -3, 0, -1, 0, -6, -1, -3, 3, -3, 6, -2, -6, 6, 1, -4, 6, 0, 5, 6, 7, -5, -4, 4, -5, 2, 4, 6, -4, -3
OFFSET
0,3
LINKS
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[q^(-7/24)* eta[q]*eta[q^2]*eta[q^4], {q, 0, 100}], q] (* G. C. Greubel, Apr 30 2018 *)
PROG
(PARI) q='q+O('q^50); Vec(eta(q)*eta(q^2)*eta(q^4)) \\ G. C. Greubel, Apr 30 2018
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved