login
A160831
G.f.: (1+62*x+570*x^2+1095*x^3+530*x^4+57*x^5+x^6)/(1-x)^7.
1
1, 69, 1032, 6905, 29573, 95789, 256488, 598417, 1258081, 2438005, 4425312, 7612617, 12521237, 19826717, 30386672, 45270945, 65794081, 93550117, 130449688, 178759449, 241143813, 320709005, 421049432, 546296369, 701168961
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1. - R. J. Mathar, Sep 17 2011
MATHEMATICA
Table[193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 69, 1032, 6905, 29573, 95789, 256488}, 30] (* G. C. Greubel, Apr 28 2018 *)
PROG
(Magma) [193*n^6/60 +151*n^5/15 +109*n^4/6 +19*n^3 +757*n^2/60 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
(PARI) x='x+O('x^30); Vec((1+62*x+570*x^2+1095*x^3+530*x^4+57*x^5 +x^6 )/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A160836 A160834 A160833 * A254683 A095255 A253000
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved