login
A160833
G.f.: (1+62*x+569*x^2+1086*x^3+521*x^4+56*x^5+x^6)/(1-x)^7.
1
1, 69, 1031, 6889, 29473, 95389, 255263, 595281, 1251025, 2423605, 4398087, 7564217, 12439441, 19694221, 30179647, 44957345, 65331681, 92884261, 129510727, 177459849, 239374913, 318337405, 417912991, 542199793, 695878961
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90. - R. J. Mathar, Sep 17 2011
MATHEMATICA
Table[1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 69, 1031, 6889, 29473, 95389, 255263}, 30] (* G. C. Greubel, Apr 28 2018 *)
PROG
(Magma) [1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n+444)/90: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
(PARI) for(n=0, 30, print1(1+n*(n+1)*(287*n^4+619*n^3+1021*n^2+689*n +444)/90, ", ")) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A160817 A160836 A160834 * A160831 A254683 A095255
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved