login
A160835
G.f.: (1+44*x+339*x^2+630*x^3+323*x^4+42*x^5+x^6)/(1-x)^7.
1
1, 51, 675, 4319, 18131, 58121, 154701, 359605, 754189, 1459111, 2645391, 4546851, 7473935, 11828909, 18122441, 26991561, 39219001, 55753915, 77733979, 106508871, 143665131, 191052401, 250811045, 325401149, 417632901, 530698351
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12. - R. J. Mathar, Sep 17 2011
MATHEMATICA
Table[1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, {n, 0, 30}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 51, 675, 4319, 18131, 58121, 154701}, 30] (* G. C. Greubel, Apr 28 2018 *)
PROG
(Magma) [1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
(PARI) for(n=0, 30, print1(1+n*(n+1)*(23*n^4+48*n^3+98*n^2+73*n+58)/12, ", ")) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A210055 A020278 A160829 * A231750 A232020 A210176
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved