OFFSET
0,2
LINKS
G. C. Greubel, Rows n=0..100 of triangle, flattened
FORMULA
Conjecture row sums: Sum_{k=0..n} |T(n,k)| = A029761(n). - R. J. Mathar, May 29 2009
EXAMPLE
Triangle begins :
1;
2, -1;
3, -3, 1;
4, -6, 5, -1;
5, -10, 16, -8, 1;
6, -15, 42, -40, 12, -1;
7, -21, 99, -162, 88, -17, 1;
8, -28, 219, -585, 514, -173, 23, -1;
9, -36, 466, -1974, 2641, -1379, 311, -30, 1;
10, -45, 968, -6388, 12538, -9536, 3245, -521, 38, -1;
11, -55, 1981, -20132, 56540, -60218, 29006, -6892, 825, -47, 1;
MAPLE
A159881 := proc(n, k) option remember; if k = 0 then n+1; elif k < 0 or k > n then 0 ; else k*procname(n-1, k)-procname(n-1, k-1) ; fi; end: for n from 0 to 10 do for k from 0 to n do printf("%d, ", A159881(n, k)) ; od: od: # R. J. Mathar, May 29 2009
MATHEMATICA
T[n_, 0]:= n+1; T[n_, k_]:= T[n, k] = If[k < 0 || k > n, 0, k*T[n-1, k] - T[n-1, k-1]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) {T(n, k) = if(k==0, n+1, if(k<0 || k>n, 0, k*T(n-1, k) - T(n-1, k-1)))};
for(n=0, 15, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 27 2018
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Apr 25 2009
STATUS
approved