OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..390
DLMF Digital library of mathematical functions, Table 18.9.1 for H_n(x)
Simon Plouffe, Conjectures of the OEIS, as of June 20, 2018.
FORMULA
E.g.f.: exp(-529*x^2 + 28*x). - Simon Plouffe, Jun 22 2018; corrected by G. C. Greubel, Jul 11 2018
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 23^n * Hermite(n, 14/23).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -28*a(n-1) +1058*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 06 2021
EXAMPLE
Numerators of 1, 28/23, -274/529, -66920/12167, -1004084/279841, ...
MATHEMATICA
Numerator[Table[HermiteH[n, 14/23], {n, 0, 40}]] (* Vincenzo Librandi, Jun 23 2018 *)
Table[23^n*HermiteH[n, 14/23], {n, 0, 30}] (* G. C. Greubel, Jul 11 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 14/23)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^99); Vec(serlaplace(exp(-529*x^2+28*x))) \\ Altug Alkan, Jul 30 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(28/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..20]]; // Vincenzo Librandi, Jun 23 2018
(GAP) List(List([0..20], n->Sum([0..Int(n/2)], k->(-1)^k*Factorial(n)*(28/23)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))), NumeratorRat); # Muniru A Asiru, Jul 12 2018
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved