login
A157278
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3, read by rows.
8
1, 1, 1, 1, 14, 1, 1, 69, 69, 1, 1, 292, 1134, 292, 1, 1, 1187, 11686, 11686, 1187, 1, 1, 4770, 100737, 254132, 100737, 4770, 1, 1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1, 1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1
OFFSET
0,5
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3.
T(n, n-k, m) = T(n, k, m).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 69, 69, 1;
1, 292, 1134, 292, 1;
1, 1187, 11686, 11686, 1187, 1;
1, 4770, 100737, 254132, 100737, 4770, 1;
1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1;
1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*f[n, k]*T[n-2, k-1, m]];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 06 2022 *)
PROG
(Sage)
def f(n, k): return 2*k if (k <= n//2) else 2*(n-k)
@CachedFunction
def T(n, k, m): # A157278
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) + m*f(n, k)*T(n-2, k-1, m)
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 06 2022
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 26 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 06 2022
STATUS
approved