OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2.
T(n, n-k, m) = T(n, k, m).
T(n, 1, 2) = A132308(n-1). - G. C. Greubel, Jan 10 2022
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 15, 15, 1;
1, 50, 134, 50, 1;
1, 157, 960, 960, 157, 1;
1, 480, 6013, 12636, 6013, 480, 1;
1, 1451, 34717, 136809, 136809, 34717, 1451, 1;
1, 4366, 190528, 1303472, 2361474, 1303472, 190528, 4366, 1;
1, 13113, 1012326, 11392866, 34496986, 34496986, 11392866, 1012326, 13113, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] - m*f[n, k]*T[n-2, k-1, m]];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
PROG
(Sage)
def f(n, k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n, k, m): # A157211
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) - m*f(n, k)*T(n-2, k-1, m)
flatten([[T(n, k, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 10 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 25 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 10 2022
STATUS
approved