OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -1, 68, 5645, 7110182, -56841741493, 5172958787971592, 4953496772756652670937, ...}.
LINKS
G. C. Greubel, Rows n = 0..30 of the triangle, flattened
FORMULA
T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 3.
T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (3, 2, -1). - G. C. Greubel, Feb 26 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -3, 1;
1, 33, 33, 1;
1, -627, 6897, -627, 1;
1, 16929, 3538161, 3538161, 16929, 1;
1, -592515, 3343562145, -63527680755, 3343562145, -592515, 1;
MATHEMATICA
(* First program *)
t[n_, k_]:= If[k==0, n!, Product[1 -(2*i-1)*(k+1), {j, n}, {i, 0, j-1}] ];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 26 2021 *)
(* Second program *)
f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}];
T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q]));
Table[T[n, k, 3, 2, -1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 26 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)))
flatten([[T(n, k, 3, 2, -1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 26 2021
(Magma)
f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >;
[T(n, k, 3, 2, -1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 26 2021
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 13 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 26 2021
STATUS
approved