OFFSET
1,4
COMMENTS
Also the number of 2 X 2n reduced magic rectangles with values 1..4n. In a magic rectangle all column sums are equal and also all row sums are equal. Reduced means up to row and column permutations. - Andrew Howroyd, Nov 22 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..1000 (terms 1..400 from Alois P. Heinz)
FORMULA
a(n) ~ sqrt(3) * 2^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 18 2017
a(n) = [x^0](Product_{k=1..2*n} x^-(2*k-1) + x^(2*k-1))/2. - Andrew Howroyd, Nov 22 2018
EXAMPLE
For n=2: {1,7}U{3,5}. For n=3: {1,3,5,9}U{7,11}. For n=4: {1,3,13,15}U{5,7,9,11}, {1,5,11,15}U{3,7,9,13}, {1,7,9,15}U{3,5,11,13}, {3,5,9,15}U{1,7,11,13}.
From Andrew Howroyd, Nov 22 2018: (Start)
For n=3: The unique 2 X 6 reduced magic rectangle is:
1 3 7 8 9 11
12 10 6 5 4 2
(End)
MAPLE
b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-2)), j=1..nargs-1)) end: a:= n-> b((2*n^2)$2, 4*n-1)/2: seq(a(n), n=1..40); # Alois P. Heinz, Sep 06 2009
MATHEMATICA
Table[SeriesCoefficient[Product[(x^(2*k - 1) + 1/x^(2*k - 1)), {k, 1, 2*n}]/2, {x, 0, 0}], {n, 1, 30}] (* G. C. Greubel, Nov 22 2018 *)
PROG
(PARI) a(n)=polcoef(prod(k=1, 2*n, x^-(2*k-1) + x^(2*k-1)), 0)/2; \\ Andrew Howroyd, Nov 22 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Wim Couwenberg (wim.couwenberg(AT)gmail.com), Feb 13 2009
EXTENSIONS
Extended beyond a(18) by Alois P. Heinz, Sep 06 2009
STATUS
approved