login
A156691
Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(i+1) ) and m = 2, read by rows.
8
1, 1, 1, 1, -5, 1, 1, 40, 40, 1, 1, -440, 3520, -440, 1, 1, 6160, 542080, 542080, 6160, 1, 1, -104720, 129015040, -1419165440, 129015040, -104720, 1, 1, 2094400, 43865113600, 6755227494400, 6755227494400, 43865113600, 2094400, 1, 1, -48171200, 20177952256000, -52825879006208000, 739562306086912000, -52825879006208000, 20177952256000, -48171200, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, -3, 82, 2642, 1096482, -1161344798, 13598189404802, 633950903882665602, 301999235305843794118402, ...}.
FORMULA
T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(i+1) ) and m = 2.
T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (2, 1, 1). - G. C. Greubel, Feb 25 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, -5, 1;
1, 40, 40, 1;
1, -440, 3520, -440, 1;
1, 6160, 542080, 542080, 6160, 1;
1, -104720, 129015040, -1419165440, 129015040, -104720, 1;
1, 2094400, 43865113600, 6755227494400, 6755227494400, 43865113600, 2094400, 1;
MATHEMATICA
(* First program *)
t[n_, k_]:= If[k==0, n!, Product[1 -(i+1)*(k+1), {j, n}, {i, 0, j-1}] ];
T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
Table[T[n, k, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 25 2021 *)
(* Second program *)
f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j, n}];
T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n, m, p, q]/(f[k, m, p, q]*f[n-k, m, p, q]));
Table[T[n, k, 2, 1, 1], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 25 2021 *)
PROG
(Sage)
@CachedFunction
def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)))
flatten([[T(n, k, 2, 1, 1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 25 2021
(Magma)
f:= func< n, m, p, q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
T:= func< n, k, m, p, q | f(n, m, p, q)/(f(k, m, p, q)*f(n-k, m, p, q)) >;
[T(n, k, 2, 1, 1): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 25 2021
CROSSREFS
Cf. A007318 (m=0), A156690 (m=1), this sequence (m=2), A156692 (m=3).
Sequence in context: A367380 A322220 A174790 * A246051 A111820 A174912
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Feb 13 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 25 2021
STATUS
approved