login
A246051
Triangle read by rows: numerator of h(n-k)*h(k)/h(n) where h(x) = zeta(2*x)*(4^x-2), 0<=k<=n.
4
1, 1, 1, 1, 5, 1, 1, 49, 49, 1, 1, 310, 343, 310, 1, 1, 4191, 341, 341, 4191, 1, 1, 1162525, 2669667, 1374230, 2669667, 1162525, 1, 1, 1414477, 46501, 562991, 562991, 46501, 1414477, 1, 1, 13924700, 48092218, 1613300, 117628797, 1613300, 48092218, 13924700, 1
OFFSET
0,5
EXAMPLE
Triangle starts:
1
1, 1
1, 5, 1
1, 49, 49, 1
1, 310, 343, 310, 1
1, 4191, 341, 341, 4191, 1
MAPLE
h := x -> Zeta(2*x)*(4^x-2);
A246051 := (n, k) -> h(n-k)*h(k)/h(n);
seq(print(seq(numer(A246051(n, k)), k=0..n)), n=0..8);
PROG
(Sage)
h = lambda n: zeta(2*n)*(4^n-2)
A246051 = lambda n, k: h(n-k)*h(k)/h(n)
for n in range(8): [A246051(n, k).numerator() for k in (0..n)]
CROSSREFS
Cf. A246052 (denominators).
Sequence in context: A322220 A174790 A156691 * A111820 A174912 A106238
KEYWORD
nonn,frac,tabl
AUTHOR
Peter Luschny, Aug 11 2014
STATUS
approved