OFFSET
0,3
COMMENTS
LINKS
Index entries for linear recurrences with constant coefficients, signature (-16,34,-16,-1).
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = (1/4) sum_{k=1..n} (-1)^k F(3k)^2.
Closed form: a(n) = (-1)^n F(6n+3)/40 - (2 n + 1)/20.
Recurrence: a(n) + 17 a(n-1) - 17 a(n-2) - a(n-3) = -2.
Recurrence: a(n) + 16 a(n-1) - 34 a(n-2) + 16 a(n-3) + a(n-4) = 0.
G.f.: A(x) = -(x + x^2)/(1 + 16 x - 34 x^2 + 16 x^3 + x^4) = -x(1 + x)/((1 - x)^2 (1 + 18 x + x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k (1/4) Fibonacci[3k]^2, {k, 1, n} ], Sum[ -(-1)^k (1/4) Fibonacci[-3k]^2, {k, 1, -n - 1} ] ]
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stuart Clary, Feb 04 2009
STATUS
approved