This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156093 One ninth of the alternating sum of the squares of the first n Fibonacci numbers with index divisible by 4. 8
 0, -1, 48, -2256, 105985, -4979040, 233908896, -10988739073, 516236827536, -24252142155120, 1139334444463105, -53524466747610816, 2514510602693245248, -118128473859834915841, 5549523760809547799280, -260709488284188911650320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Natural bilateral extension (brackets mark index 0): ..., -105985, 2256, -48, 1, 0, [0], -1, 48, -2256, 105985, -4979040, ... This is (-A156093)-reversed followed by A156093. That is, A156093(-n) = -A156093(n-1). LINKS Index entries for linear recurrences with constant coefficients, signature (-48,-48,-1). FORMULA Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n). a(n) = (1/9) sum_{k=1..n} (-1)^k F(4k)^2. Closed form: a(n) = (-1)^n (L(8n+4) - 7)/315. Factored closed form: a(n) = (-1)^n F(4n) F(4n+4)/63. Recurrence: a(n) + 47 a(n-1) + a(n-2) = (-1)^n. Recurrence: a(n) + 48 a(n-1) + 48 a(n-2) + a(n-3) = 0. G.f.: A(x) = -x/(1 + 48 x + 48 x^2 + x^3) = -x/((1 + x)(1 + 47 x + x^2)). MATHEMATICA a[n_Integer] := If[ n >= 0, Sum[ (-1)^k (1/9) Fibonacci[4k]^2, {k, 1, n} ], Sum[ -(-1)^k (1/9) Fibonacci[-4k]^2, {k, 1, -n - 1} ] ] CROSSREFS Cf. A156086, A156087, A156092. Sequence in context: A233259 A049678 A162913 * A163266 A163829 A164348 Adjacent sequences:  A156090 A156091 A156092 * A156094 A156095 A156096 KEYWORD sign,easy AUTHOR Stuart Clary, Feb 04 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 18:12 EDT 2019. Contains 322461 sequences. (Running on oeis4.)